## EPFL LUTS



Optimization of multi-modal and multipurpose transport and logistics systems

Patrick Stokkink
Lecture 12 (Guest lecture)
CIVIL-457

## **About me**

Patrick Stokkink

#### **Erasmus** University **Rotterdam**

Bachelor and Master in Econometrics and Operations Research





PhD in Transportation (Civil Engineering)



TUDelft Assistant Professor in Transportation and Logistics

## **About me**


#### My work:

- Developing innovative and sustainable approaches to last-mile passenger and logistics transport
- Integration of passenger and freight transport
- Large-scale optimization and simulation techniques (Operations Research)

## **Digesting the title – some definitions**

Optimization of multi-modal and multi-purpose **transport and logistics systems** 

- In this course, you mainly looked at passenger transport
- Another large share of emissions is produced by logistics transport (= transport of freight or goods)



## **Digesting the title – some definitions**

Optimization of **multi-modal and multi-purpose** transport and logistics systems

- Multi-modal transport: Transportation of goods or passengers by a combination of at least two different modes of transport
- Multi-purpose transport: During your commute, you fulfill another transportation purpose. For example:
  - carpooling (commute + passenger transport)
  - crowd-shipping (commute + goods transport)

## **Digesting the title – some definitions**

**Optimization** of multi-modal and multi-purpose transport and logistics systems

Three levels of optimization:



Big-picture and long-term decisions
Limited availability of data
Examples: locating facilities, initial investment
in infrastructure

Short-term decisions (months – year) More but still limited availability of data Examples: scheduling public transport lines, hiring staff, deploying trucks

Day-to-day operations
Large availability of data (not necessarily full!)
Examples: matching passengers to drivers,
determining the truck route

## **Outline of today**

- Differences between passenger and freight transport
- Strategic, operational and tactical decisions in crowd-shipping
- Strategic decisions in multi-modal transport
- Mobility hubs

## Differences between passenger and freight transport

## Why are we interested?

- Their differences allow to optimize the specific needs of each system
- Differences and similarities can illustrate where the two can be integrated (multi-purpose)
- The same mode may operate differently in different countries
  - In Europe, trains are focused on passenger transport first, and freight transport second
  - In the USA, trains are focused on freight transport first, and passenger transport second
- When two modes of transport are combined in multi-modal transport, the differences effect the way in which they cooperate.

### What are the differences?

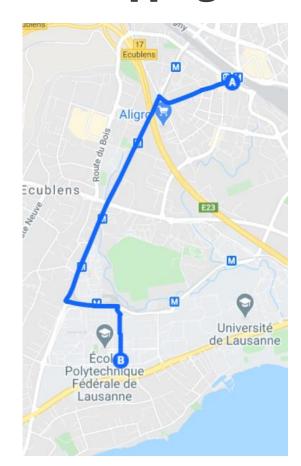
The answer is rather straightforward:

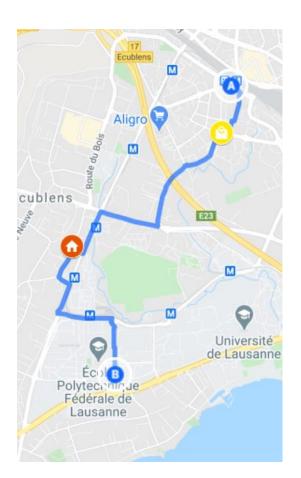
- Passengers make their own decisions Goods do not
- Passengers are more flexible in terms of movement
- Passengers are less flexible in terms of time schedules
- Passengers are affected stronger by detours, waiting times, etc.
- Goods always need to be accompanied by someone who transports them (or autonomous vehicles), passengers can travel on their own
- Etc.

### What is the effect of these differences?

Patrick Stokkinl

• In the remainder of the lecture, you will see how these differences can have a key effect on the operations!





## Strategic decisions in a crowd-shipping

## **Crowd-shipping**

- Last-mile delivery: The final part of the journey of a package. Typically, from a warehouse to front door of the customer.
- Last-mile delivery constitutes to the majority of the emissions of the supply chain.
- Crowd-shipping or crowd-sourced last-mile delivery:
   Commuters pick up and deliver a package/parcel on their pre-existing routes (possibly with a small detour) and thereby contribute to the last-mile delivery process

## **Crowd-shipping**





## **Crowd-shipping**

#### Advantages

 Delivery vehicles are highly polluting and can contribute to congestion in urban areas by causing roadblocks.

Crowd-shippers can travel by bike or by foot and already have an

external travel purpose

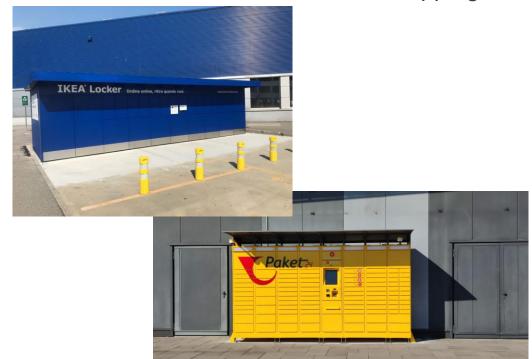


- Flexibility: new parcels can be added dynamically, without the constraint of delivery vehicles that need to return to a pickup point
- Cheap: crowd-shippers are typically cheaper than regular staff

## **Crowd-shipping**

#### What are good locations for pickup points?

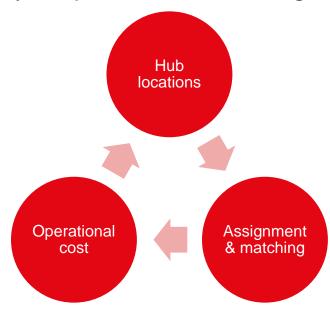
- First practice: pickup from stores
- This is problematic if store is at an unfortunate location
- Can we find good intermediate pickup points (depots) to store the parcels for pickup?


#### Based on:

Stokkink, P., & Geroliminis, N. (2023). A continuum approximation approach to the depot location problem in a crowd-shipping system. Transportation Research Part E: Logistics and Transportation Review

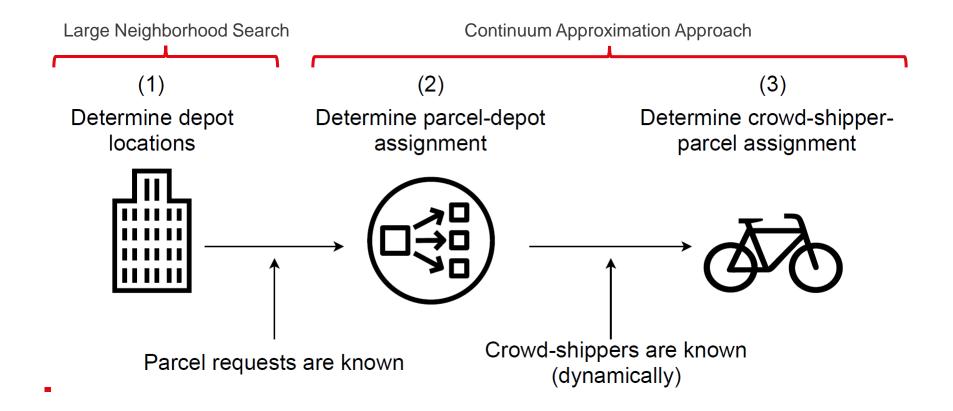


## **Crowd-shipping**


- Parcel lockers and storage hub locations
- We already introduced in Switzerland by SwissPost, IKEA and Migros but not combined with crowd-shipping






## **Crowd-shipping**

- The idea: parcels are stored at hub locations in the morning and picked up and delivered by crowd-shippers throughout the day
- Question: Where do we construct these lockers?
- Interdependency of operational and strategic decisions





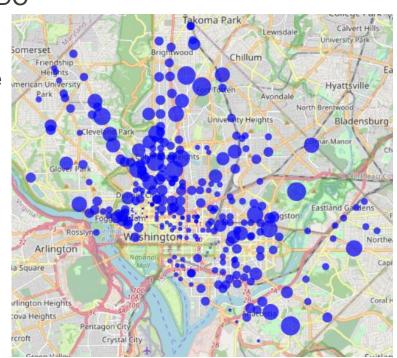
## **Depot location problem**





## **Depot location problem**

Let  $\hat{\mu}_r$  be the total demand in region rLet  $v_r(D)$  be the served demand, as approximated through CA Let  $a_{rd}$  be the demand in region r assigned to depot d, as approximated through CA


Fixed depot cost 
$$\mathcal{C}(D) = \frac{\phi^{\text{depot}}|D|}{|D|} + \sum_{r \in R} \left[ \sum_{d \in D} \phi_{dr}^{\text{cs}} \frac{a_{rd}}{\sum_{d \in D} a_{rd}} \right] v_r(D) + \phi^{\text{reg}} \sum_{r \in R} (\hat{\mu}_r - v_r(D))$$

Distance-based crowd-shipper compensation

#### **EPFL**

## **Case study**

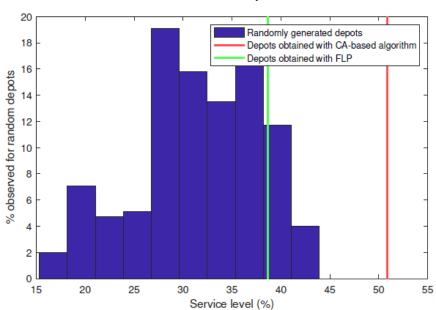
- Case study analysis based on Washington DC
- Demand is proportional to population
  - More demand in the suburbs, less in the city center
- Potential crowd-shippers are generated based on historical data from the Capital Bikesharing system
  - More users in the city center, less in the suburbs
- Our case study captures the asymmetry between supply and demand in realistic networks

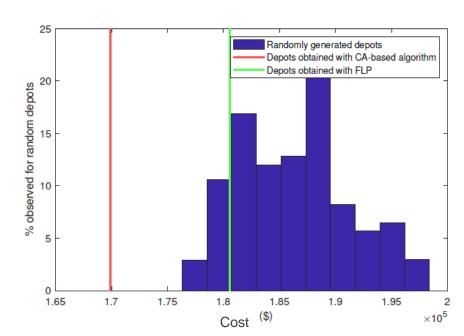


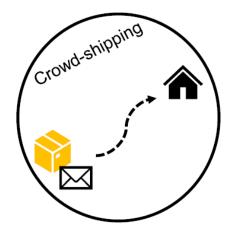
## **Crowd-shipping**

#### Results

- The best location is a trade-off between:
  - Geographically central locations
  - Locations that are on frequently used paths by crowd-shippers
- Usually, the second component is the dominant one!


Train station **EPFL Crowd-shipping** Highly populated area (high supply) University Heights Bladensburg Mount Rainier Cleveland Park Colmar Manor Glover Park MD 201 Kenilworth Eastland Gardens 72 m Langston Washington City center National (high supply) VA 110 VA 27 Anacostia Pentagon City Noval Statio MD 218 Crystal

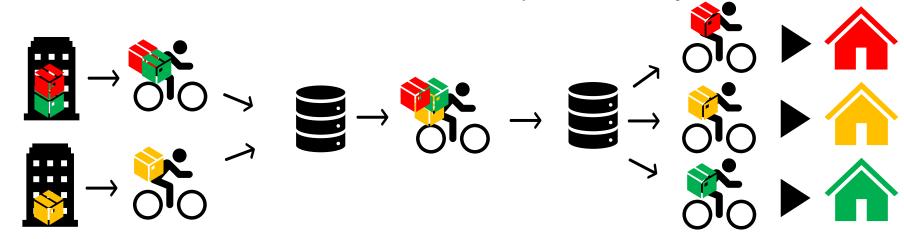

© OpenStreetMar


## **Crowd-shipping**

Patrick Stokkink

- What if we ignore the knowledge we have on crowd-shipper movement?
- FLP: Facility Location Problem








# Operational decisions in a crowd-shipping system



- We consider bike-based crowd-shipping in an urban area
- Bike trips are usually relatively short distance, and cannot go directly from origin to destination
- Various trips can be connected through transfers from one crowd-shipper to another
- This can increase the service level and improve efficiency





- Highly similar to ride-sharing with transfers
- Can we use the same approach?
- If we allow for more than one transfer, the number of paths grows exponentially
- → We resort to column generation

#### **Definition 2: Parcel Path**

A parcel path is the *trajectory that a parcel traverses* to get from its origin to its destination. A parcel path is made up of one or more segments that a parcel travels with a crowd-shipper. Between segments, a parcel can be stored at a transfer point.



$$\begin{array}{c} maximize \ \sum_{p \in P} \sum_{k \in K_p} \pi_k x_k \\ \\ subject \ to \end{array}$$

$$\sum_{k \in K_p} x_k \leq 1$$

$$\forall p \in P$$

A parcel is delivered at most once

$$\sum_{k \in K} a_{ck} x_k \le 1$$

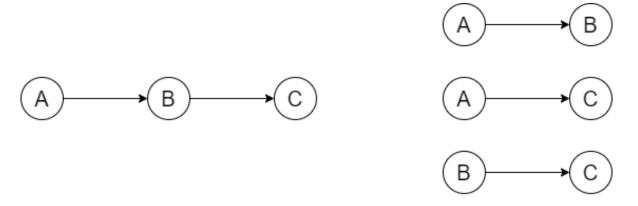
$$\forall c \in C$$

A crowd-shipper is used at most once

$$x_k \in \mathbb{B}$$

$$\forall k \in K$$

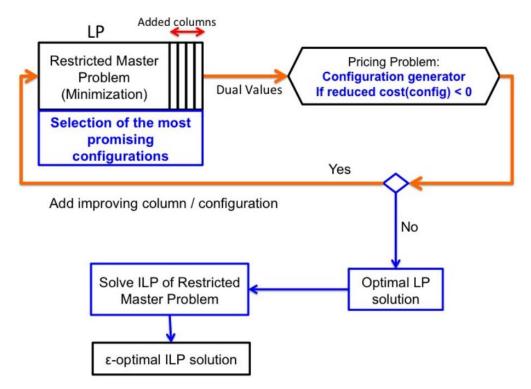
This can be relaxed, but is outside the scope of this lecture




## **Problem description**

#### **Definition 1: Segment**

A segment is a part of a crowd-shippers itinerary during which they can carry a parcel. A segment has a fixed start time, origin and destination and may incur a small detour on the crowd-shipper, relative to his/her original itinerary.

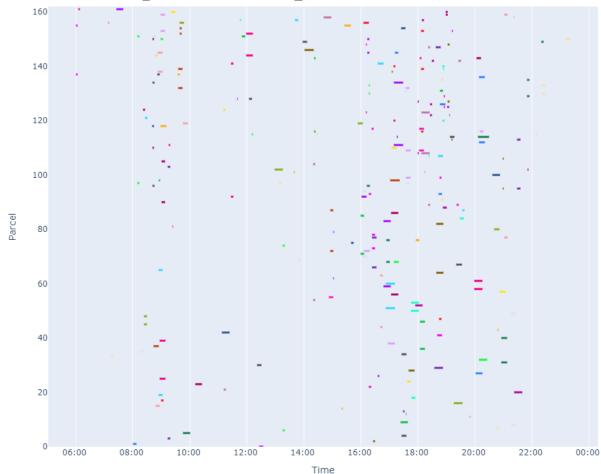

→ Multiple segments together constitute to a parcel path



#### **EPFL**

## **Crowd-shipping with transfers**

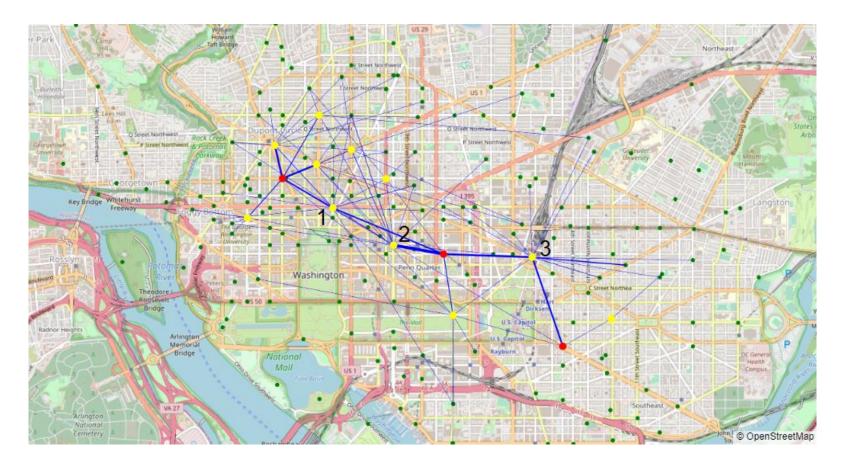
 The details of the column generation approach is outside the scope of the lecture, but the intuition is as follows.






- The details of the column generation approach is outside the scope of the lecture, but the intuition is as follows.
- Master problem: Selecting the best parcel paths that satisfy the constraints
- Pricing problem: Generating a new parcel path that improves the current solution
  - The pricing problem is equivalent to a shortest path problem on a graph G = (V, A)
  - The segments make up the vertices in V
  - If one segment can be executed after the other (in space and time) they are connected by an arc in  ${\cal A}$

#### **EPFL**


## **Spatio-temporal analysis**





## **Spatio-temporal analysis**

Red = origin/depot/store Yellow = transfer hub Green = destination



## **Results**

- Column (and row) generation allows to rapidly solves the problem close to optimality
- Transfers can gain 30% in revenue and service level, and increased capacity can increase it by another 40%
- Our global approach outperforms locally optimal assignment strategies by 25%.
  - Coordination between crowd-shippers is extremely important!

# Tactical decisions in a crowd-shipping system

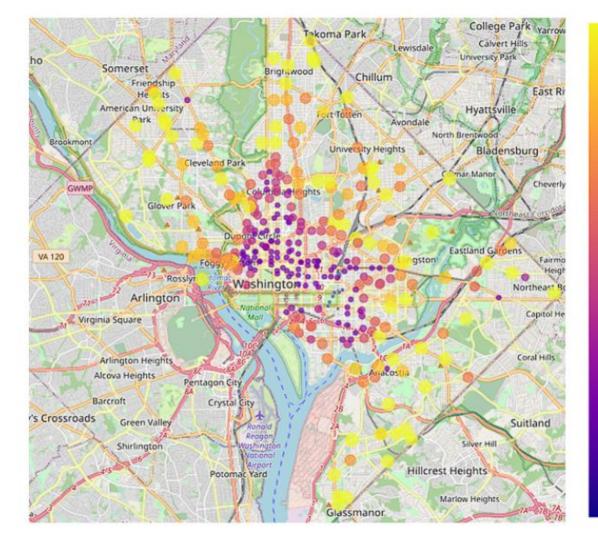
## **Pricing of on-demand mobility**

- Demand can be increased by positive rewards (incentives, subsidies) or decreased by negative rewards (taxes)
- How is this used in on-demand mobility:
  - Stimulate ride-hailing users to share a trip
  - Stimulate car users to ride-share
  - Stimulate commuters to participate as a crowd-shipper
  - Etc.
  - Can you think of something else?

Patrick Stokkink

### Price & reward strategy in a crowd-shipping system

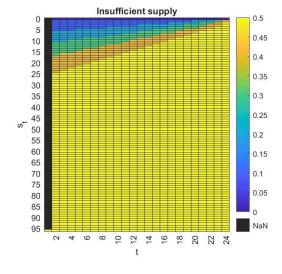
#### Idea:

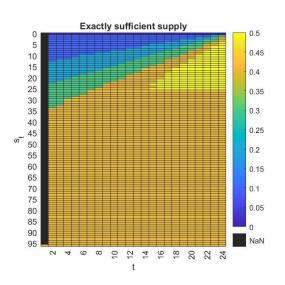

- A driver arrives
- A reward/price is offered to the driver in return for executing the job
- The driver can choose to accept or decline

#### What is the trade-off?

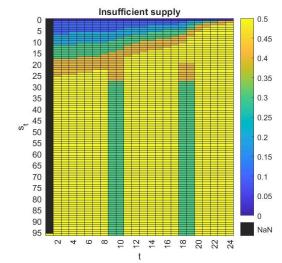
- If the reward is high, many people accept, but the costs are high
- If the reward is low, costs are low, but few people accept, some jobs remain unexecuted

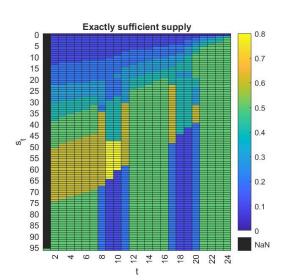
#### **EPFL**

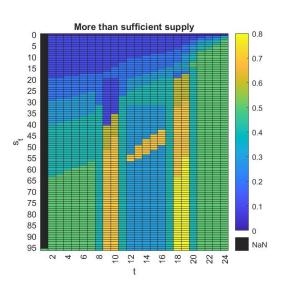

If we apply these tools to the Washington DC case study from before...




reward


#### Rewards over time if number of crowdshippers is constant













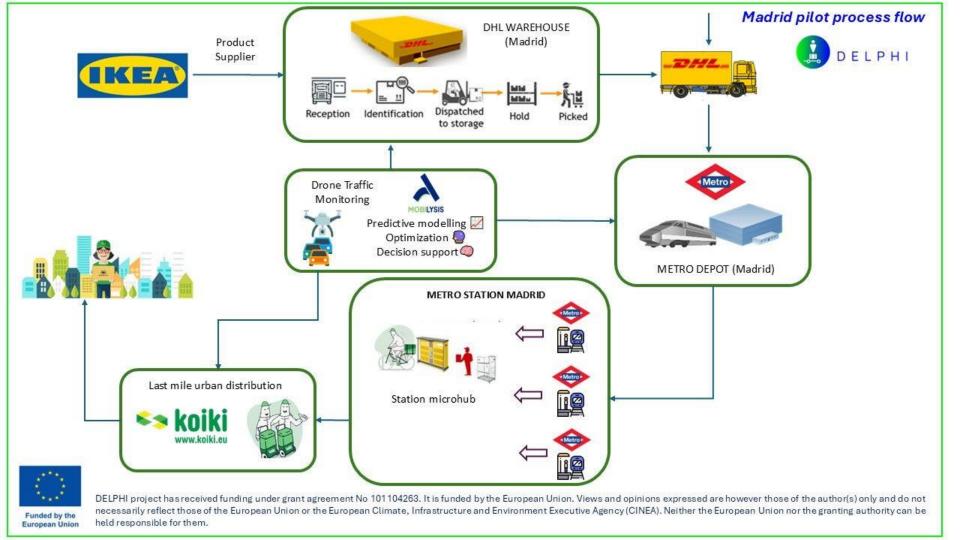



# Multi-modal transportation

Patrick Stokkink

## **Multi-modal transport**

 Definition: Transportation of a single product by at least two modes of transportation


- Common for long-haul transportation, for example:
  - First ship, then truck
  - Firt plane, then truck
- Less common for short-haul (last-mile) transportation.
  - Traditionally: Trucks are used
    - Pro: Efficient
    - Con: Polluting and undesirable presence in cities
  - New alternative: Micro-delivery
    - Pro: Not polluting, more sustainable
    - Con: Less efficient

## **Multi-modal transport**

Patrick Stokkink

 Multi-modal transport in last-mile delivery can use the benefits of both these options, while avoiding their downsides.

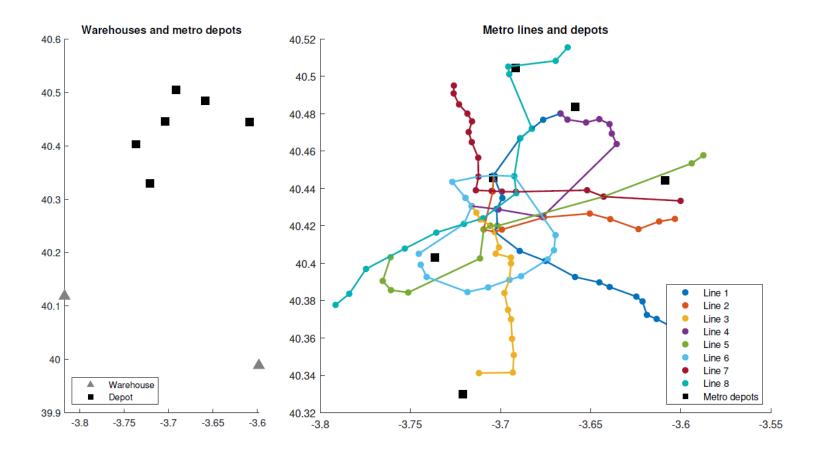
One example: DELPHI EU project



## **Strategic decision: Where to open micro-hubs**

Patrick Stokkink

Truck Metro Micro-mobility




Consolidation centre Metro depot Micro-hub Customer

CIVIL-457: Lecture 12

#### The network





#### **Simulated results**

Patrick Stokkink

Table 1: Comparison of multi-modal to traditional delivery

| Truck                     | MD   | Truck cost $(\in)$ | MD cost $(€)$ | Total cost $(\in)$ | Emissions (CO2 KG) | Staff | KM/Staff |
|---------------------------|------|--------------------|---------------|--------------------|--------------------|-------|----------|
|                           |      |                    |               | Multi-modal        |                    |       |          |
| small                     | foot | 2017.25            | 6457.30       | 8474.55            | 430.83             | 154   | 20.97    |
| $\operatorname{small}$    | bike | 1861.32            | 2183.45       | 4044.77            | 397.52             | 52    | 63.62    |
| $_{ m large}$             | foot | 1942.36            | 6561.67       | 8504.03            | 323.73             | 153   | 21.44    |
| large                     | bike | 1904.54            | 2164.36       | 4068.90            | 317.42             | 54    | 60.73    |
|                           |      |                    |               | Traditional        |                    |       |          |
| $\overline{\text{small}}$ |      | 4803.87            |               | 4803.87            | 1025.97            |       | _        |
| large                     |      | 5101.88            |               | 5101.88            | 850.31             |       |          |

## **Exercises: Easy ways for location decisions**

#### **Simulated results**

Table 1: Comparison of multi-modal to traditional delivery

| Truck                     | MD   | Truck cost $(\in)$ | MD cost $(€)$ | Total cost (€) | Emissions (CO2 KG) | Staff | KM/Staff |
|---------------------------|------|--------------------|---------------|----------------|--------------------|-------|----------|
|                           |      |                    |               | Multi-modal    |                    |       |          |
| $\overline{\text{small}}$ | foot | 2017.25            | 6457.30       | 8474.55        | 430.83             | 154   | 20.97    |
| $\operatorname{small}$    | bike | 1861.32            | 2183.45       | 4044.77        | 397.52             | 52    | 63.62    |
| $_{ m large}$             | foot | 1942.36            | 6561.67       | 8504.03        | 323.73             | 153   | 21.44    |
| large                     | bike | 1904.54            | 2164.36       | 4068.90        | 317.42             | 54    | 60.73    |
|                           |      |                    |               | Traditional    |                    |       |          |
| small                     |      | 4803.87            |               | 4803.87        | 1025.97            |       |          |
| large                     |      | 5101.88            |               | 5101.88        | 850.31             |       |          |

Patrick Stokkink

## Thank you!

Now: Time for questions

Next hours: Exercises

For questions later, don't hesitate to email me <a href="mailto:p.s.a.stokkink@tudelft.nl">p.s.a.stokkink@tudelft.nl</a> or the TA's

If this topic interested you and you want to know more or work on this yourself, contact me at:

p.s.a.stokkink@tudelft.nl